
ACSUPPLY 

C Ci 

Alternating Current RC Circuits 

1 Objectives 

1. To understand the voltage/current phase behavior of RC circuits under applied alter-
nating current voltages, and 

2. To understand the current amplitude behavior of RC circuits under applied alternating 
current voltages. 

2 Introduction 

While you have studied the behavior of RC circuits under direct current conditions, very few 
interesting circuits have purely direct currents and constant applied voltages. All productive 
or interesting circuits operate under alternating current conditions - think computers, radios 
(including cell phones), etc. 

In a previous lab1 you studied the behavior of the RC circuit under constant applied 
(or DC) voltages. Here, you will study the behavior of the same circuit under sinusoidally 
alternating applied (or AC) voltages (see Figure 1). 

Figure 1: The RC circuit. 
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Figure 2: A schematic of the phase difference between the applied voltage V (t) and the 
derived current I(t). 

3 Theory 

Let’s begin analyzing this circuit the same way you analyzed the DC RC circuit, via Kirchoff’s 
Rules. As before, you’ll find 

Vs(t) − VR(t) − VC (t) = 0 . 

Again, just as in the DC case, 

q(t) dq(t) 
VC (t) = VR(t) = I(t)R I(t) = , 

C dt 

leading to the differential equation 

dq(t) q(t) Vs(t) 
+ = , 

dt RC R 

which has the general solution � Z t � 
Vs(t) −t/RC t0/RC t/RC q(t) = e q(t0)e + e dt . 
R t0 

If Vs(t) is allowed to be any old arbitrary function, you’re stuck. But getting stuck takes 
all the fun out of your work, so of course, you can’t allow it to be an arbitrary function: 
let’s focus on sinusoids. This is a class of broadly useful functions - they’re what come out 
of the wall, for instance. But most importantly, they are highly amenable to mathematical 
manipulation and analysis, due to Fourier’s theorem: any well behaved function can be 

1The Time Constant of an RC Circuit 
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decomposed into a (potentially infinite) sum of sinusoids of all possible frequencies. Let’s 
take 

Vs(t) = Vs cos ωt . 

In Appendix A we’ll derive the full solution; here, you will require only the steady state 
response, which gives the time dependent charge as 

1 
q(t) = VsC p sin(ωt + φ) , 

1 + (RCω)2 

where tan φ = 1/RCω. You know φ as a phase constant. When you calculate the current 
flow, I(t), in this circuit, you will find a remarkable thing: 

Vs RCω 
I(t) = p cos(ωt + φ) . 

R 1 + (RCω)2 

Because of the presence of the capcitor, the applied voltage Vs(t) gives rise to a current which 
not only has a frequency dependent amplitude, but more importantly has a different phase 
than the source voltage; see Figure 2. Because phi is positive, the current rises slightly before 
the voltage: we say the current leads the voltage, or that the voltage follows the current. 

In our teaching labs, we don’t have the tools to measure the current profile and compare 
it directly to the applied voltage - remember, we only have ammeters, voltmeters, and 
oscilloscopes (which behave for most purposes like voltmeters). To use the oscilloscope to 
measure this phase difference, you must find a voltage that follows exactly in phase with the 
current . . . and you have one of those: the voltage across the resistor. Measuring VR(t) and 
comparing with Vs(t) allows us to measure φ. 

Vs(t) = Vs cos ωt 
RCω 

VR(t) = Vs p cos(ωt + φ) = I(t)R 
1 + (RCω)2 

1 
VC (t) = Vs p sin(ωt + φ) , 

1 + (RCω)2 

There is another point of interest: the behavior of the system as a function of frequency. 
In the limit that the frequency goes to zero (that is a DC voltage), the steady state behavior 
of this system should look just like the DC system you studied previously: VR(t) should go 
to zero, Vs(t) should equal the applied voltage. You should check these assertions. In the 
other extreme, where the frequency gets large, you probably have no a priori expectations. 
Plotting the behavior as a function of frequency (see Figure 3), you will find that the ampli-
tude of VC (t) vanishes, while the amplitude of VR(t) goes to Vs, while the phase difference 
between the applied voltage and resulting current also vanishes. You can prove this by tak-
ing the limits of the voltage expressions when ω → ∞. In other words, the circuit acts like 
the capacitor isn’t even there! Capacitors become transparent to currents at high frequency, 
and opaque to currents at very low frequencies. This is known as filtering behavior, and is 
the basis of most of the interesting behaviors in the analog electronics we all use everyday. 
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Figure 3: The phase angle as a function of angular frequency, while the function amplitudes 
are displayed on the right. In both cases, the frequency is normalized in units of 1/RC. The 
phase is normalized to π/2, while the amplitudes are normalized to Vs. Notice the limiting 
behavior when ω = 1/RC. 

There is another way to view the complexities of voltages and currents in AC RC circuits. 
Notice that the quantity RCω is dimensionless; in other words, 1/Cω has the units of 
resistance. It isn’t a resistance (it’s not a constant, for starters), but it has the same units, 
and some of the same properties. Let’s define the quantity 

1 1 
XC = = , 

ωC 2πfC 

which is called the capacitive reactance of the circuit. Next, define the impedance Z 

Z2 = R2 + XC 
2 . 

As it turns out, if you look only at the amplitudes of the current and applied voltages, they 
are related by 

Vs = ZI , 

a sort of generalized version of Ohm’s Law. Note further that 

1 XC 
tan φ = = . 

RCω R 
With these definitions, you can rewrite the voltage equations for the resistor and capacitor 
as 

R 
VR(t) = Vs cos(ωt + φ) = I(t)R 

Z 
XC 

VC (t) = Vs sin(ωt + φ) . 
Z 

By combining these with the definition of impedance above, you also find 

Vs 
2 = VR 

2 + VC 
2 . 
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Figure 4: Definition of the points on the oscilloscope curve called out in Step 4. 

4 Procedures 

You should receive two multimeters, an oscilloscope, a function generator, a decade resistance 
box, and a decade capacitor box. 

1. First, let’s select component values for testing. Choose a value for the capacitance 
between 0.06 µF and 0.1 µF. Select a frequency between 300 Hz and 600 Hz. Calculate 
XC and choose a value for R ≈ 1.2XC . Measure and record the values of R and C 

2. Configure the circuit for testing shown in Figure 1. Insert one multimeter to record 
the AC current; except in the last two steps of the procedure, make sure the current 
remains constant throughout the experiment. 

3. Using the other meter, record the frequency f , and the RMS AC voltages across the 
signal generator Vs, the resistor VR, and the capacitor VC . 

4. Let’s measure the phase shift between the current and applied voltage. Connect the 
oscilloscope so as to measure the voltage across the resistor and signal generator; make 
sure the negtive inputs share a common reference point. Make sure the two signal base-
lines are centered with respect to the horizontal and vertical axes of the oscilloscope, 
and adjust the voltage and time scales so that slightly more than one cycle of both 
waveforms is visible. You should have a display that looks roughly like Figure 4. We’re 
going to record the differences between the zero crossings, and calculate the phase 
from these differences. Record (at least!) A1A3, A1B1, and B1A2 using the cursors.2 

Increase the frequency by 50%, and determine the phase shift again. Double the initial 
frequency, and repeat. 

2A2B2 and B2A3 are redundant with A1B1, and B1A2, and A1A2 should equal A2A3 if you have properly 
centered the sinusoid vertically. 
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5. Next, map out the amplitude of the current response. Without changing R and C, 
vary the frequency over, say, ten points, and record the frequency, RMS voltage Vs, 
and RMS current I at those points. Measure and record your observations of the 
amplitudes of Vs and VR on the oscilloscope. 

A Derivation of Solutions 

The differential equation for the AC RC circuit is given in Section 3. It has the general 
solution � Z � t Vs(t) −t/RC t0/RC t/RC q(t) = e q(t0)e + e dt . 

R t0 

If Vs(t) is allowed to be any old arbitrary function, we’re stuck. But getting stuck takes 
all the fun out of your work, so of course, we won’t allow it to be an arbitrary function: 
we’ll focus on sinusoids. This is a class of broadly useful functions - they’re what come out 
of the wall, they’re present in electromagnetic radiation, and they are highly amenable to 
mathematical manipulation and analysis. Let’s take 

Vs(t) = Vs cos ωt . 

From your Physics I course, you should remember that Vs is the amplitude of the oscillation, 
while ω = 2πf is the angular frequency. With this applied voltage, we can perform the 
integration, which I leave as an exercise to the reader.3 

Upon integrating and collecting terms, you will find a very complicated looking expres-
sion: � � 

1 1 −(t−t0)/RC − e −(t−t0)/RC Vs 
q(t) = q(t0)e cos ωt0 + ω sin ωt0 

R (1/RC)2 + ω2 RC � � 
Vs 1 1 

+ cos ωt + ω sin ωt . 
R (1/RC)2 + ω2 RC 

Notice that the first line contains a decaying exponential dependence on time; wait long 
enough, and those terms all die off. This is called the transient response of the circuit, 
which comes from the initial charge on the capacitor and the initial action of turning on the 
function generator at time t0. The second line has no exponential dependence, and is called 
the steady state response of the circuit. That’s the part we are really interested in, and it 
looks fairly awful in this form. Let’s clean it up some. 

Consider the following expression 

α cos ωt + ω sin ωt . 

3Hint: 

iωt −iωt e + e 
cos ωt = . 

2 

6 



Both terms have the same frequency, so we should be able to rewrite this as a single sinusoid, 
with a phase shift 

A sin(ωt + φ) . 

Applying the trigonometric angle addition identities, we find 

A sin(ωt + φ) = A sin φ cos ωt + A cos φ sin ωt . 

Equating terms in this expression with the first expression in the paragraph, you find 

α = A sin φ ω = A cos φ . 

Solving for A and φ, you should obtain 

√ α 
A = α2 + ω2 tan φ = . 

ω 

Substituting back into the steady state response in the previous paragraph, where α = 1/RC, 
we find 

1 
q(t)ss = VsC p sin(ωt + φ) . 

1 + (RCω)2 
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Pre-Lab Exercises 

Answer these questions as instructed on Blackboard; make sure to submit them before your 
lab session! 

1. Calculate the reactance of a 0.01 µF capacitor at a frequency of 250 Hz. 

2. If an RC circuit has a 50 Ω resistor in series with a 1 µF capacitor, what will its 
impedance be at 500 Hz? 

3. An RC circuit has a 5 kΩ resistor and a 1 µF capacitor. At what frequency will the 
current lead the voltage by π/4? 

4. An RC circuit has a 5 kΩ resistor and a 1 µF capacitor. This circuit is driven by a 
100 Hz sine wave with 1 V amplitude. What is the amplitude of the current in the 
circuit? 
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Post-Lab Exercises 

1. From your measured resistance, capacitance, and frequency, determine the reactance 
and impedance of your circuit. Make sure to estimate your uncertainties. Determine 
the impedance experimentally via another method, taking care of the uncertaintites.Do 
you get the same results? 

2. Estimate the uncertainties on the measured values of Vs, VC , and VR. Are the three 
values consistent with each other? Explain what you mean by “consistent”. 

3. Describe qualitatively what happens to your signals when you vary the frequency. 

4. From your measurements in Step 4 of the procedure, determine the phase shift at each 
of the three measured frequencies, including an estimate of the uncertainty. How do 
these compare to the theoretical predictions? 

5. Is your data from Step 5 consistent with the predictions of theory? Specifically, do the 
voltage and current amplitudes measured by oscilloscope and by multimeter match, 
within uncertainties, and do they comport with theoretical expectations? 

6. Discuss briefly whether you have met the objectives of the lab exercises. 
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