Experiment 6. Atwood Machine
Diluting gravity so that the time of fall can be measured more accurately.

Objective:

To study motion under gravity and to determine the value of g , the acceleration due to gravity by using an Atwood machine.

Apparatus:

An Atwood machine (Fig. 2), a timer, weights.
Theory:
Consider the two masses M_{1} and M_{2}, attached to the ends of a light string passing over the light smooth pulleys as shown in Fig. 1. Mass M_{1} is greater than M_{2}. When the masses are released, M_{1} will descend with an acceleration ' a ' and M_{2} will ascend with the same acceleration ' a '. The tension T in the string is the same throughout its length.

Fig. 1

By applying Newton's second law of motion to mass M_{1}, Resultant of external forces acting on $M_{1}=\left(\right.$ Mass $\left.M_{1}\right)\left(\right.$ acceleration of $\left.M_{1}\right)$.
Or $\quad T-M_{1} g=-M_{1} a$
Note that the acceleration of M_{1} is downward and hence the negative sign.

Similarly, for the motion of M_{1},

$$
\begin{equation*}
T-M_{2} g=M_{2} a \tag{2}
\end{equation*}
$$

By subtracting Eq. (1) from Eq. (2),

Or $\quad a=\frac{M_{1}-M_{2}}{M_{1}+M_{2}} g=\frac{\Delta M}{\Sigma M} g$
Here $\Delta M=M_{1}-M_{2}=$ difference between the masses, and $\Sigma M=M_{1}+M_{2}=$ sum of the masses.
Note that the weights of the hangers must be considered in calculating $\Delta \mathrm{M}$ and $\mathrm{\Sigma M}$.

Eq. (3) indicates that if $\Sigma \mathrm{M}$ is kept constant, $a \propto \Delta M$.

Thus a graph between a and $\Delta \mathrm{M}$ will be a straight line and the value of g can be computed from the graph.

Further, Eq. (3) indicates that if $\Delta \mathrm{M}$ is kept constant,
$a \propto \frac{1}{\Sigma M}$.
Thus a graph between a and $\frac{1}{\Sigma M}$ will be a straight line.
The value of g can be computed from the slope of the a versus $\frac{1}{\Sigma \mathrm{M}}$ graph. Procedure:

1. Study the working of the Atwood machine apparatus (Fig. 2) carefully. The masses M_{1} and M_{2} are tied at the ends of a light string passing over two smooth light pulleys. The lighter mass M_{2} is held by a clamp C while the heavier mass M_{1} hangs free. The timer should be reset before releasing the mass M_{2}. As soon as the mass M_{2} is released, the timer starts. Mass M_{2} rises and mass M_{1} falls. When mass M_{1} hits the target pad, the timer stops. Thus the time of fall of M_{1} is measured.
2. Practice operating the apparatus a few times. Clamp mass M_{2} such that its bottom is in level with the lower edge of the clamp C. Reset the timer and release the system so that mass M_{1} falls on the target pad. Record the time of fall. Repeat the process a few times until you get consistent values of the time of fall.
3. Clamp mass M_{2} such that its bottom is in level with the lower edge of the clamp C. Hold the meter stick vertically such that its one end rests on the target pad and read the position of the bottom of mass M_{1}. Thus
determine the distance of fall which is the height of the bottom of mass M_{1} above the target pad.
4. Keeping ΣM constant, find the times of fall for five or six different values of ΔM. Measure the time of fall three times for each value of ΔM.
5. Keeping $\Delta \mathrm{M}$ constant, find the times of fall for five or six different values of $\Sigma \mathrm{M}$. Measure the time of fall three times for each value of $\Sigma \mathrm{M}$.

Sample set of masses to be clamped on the left and right cylinders for the two pars of the experiment are given below:

Note that masses M_{1} and M_{2} consist of masses clamped on the left and right cylinders.

Let mass of the right cylinder $\quad=C_{1}$
mass clamped on the right cylinder $\quad=m_{1}$
mass of the left cylinder $\quad=C_{2}$
mass clamped on the left cylinder $=m_{2}$
Thus mass M_{1}

$$
=m_{1}+C_{1}
$$

and mass M_{2}
$=m_{2}+C_{2}$

$\Sigma \mathrm{M}=$ constant		
No.	$\mathrm{m}_{1}(\mathrm{~kg})$	$\mathrm{m}_{2}(\mathrm{~kg})$
1	0.095	0
2	0.085	0.01
3	0.075	0.02
4	0.065	0.03
5	0.055	0.04

$\Delta \mathrm{M}=$ constant		
No.	$\mathrm{m}_{1}(\mathrm{~kg})$	$\mathrm{m}_{2}(\mathrm{~kg})$
1	0.02	0
2	0.03	0.01
3	0.04	0.02
4	0.05	0.03
5	0.06	0.04

Make tables similar to the above examples with suitable values of m_{1} and m_{2} for use in steps 4 and 5 of the procedure.

Use mks units in this experiment.

York College of The City University of New York
Physics 1
Name:
Experiment No. 6: Pre-Lab Questionnaire
The following data were obtained in an Atwood machine experiment:
Distance of fall $=0.455 \mathrm{~m}$

M_{1}	M_{2}	Time of fall (sec)			
		R_{1}	R_{2}	R_{3}	
0.20 kg	0.10 kg	0.535	0.539	0.932	

1. Explain why the third reading R_{3} should be discarded or repeated?
2. On repeating the experiment, R_{3} was found to be 0.531 sec . Find the average value of time of fall.
3. Find the value of acceleration 'a' from the above data.
4. Calculate the value of ' g ' from the above data.

Name:	Experiment No. 6
Partner:	Marks:
Section:	Remarks:
Date Submitted:	
Title:	
Objective:	

Data Sheet

Mass of the right cylinder, $\mathrm{C}_{1}=$
Mass of the left cylinder, $\mathrm{C}_{2}=$
Distance of fall, D =
Least count of the timer =
$\Sigma \mathrm{M}=$ constant:
Note that small m's (m_{1} and m_{2}) represent masses on the cylinders.
$\Sigma M=m_{1}+C_{1}+m_{2}+C_{2}=$
In the following table, $\Delta M=m_{1}+C_{1}-m_{2}-C_{2}$.

No.	m_{1} $(\mathrm{~kg})$	m_{2} $(\mathrm{~kg})$	ΔM $(\mathrm{~kg})$	Time of fall, T $($ second) Average T $a=\frac{2 \mathrm{D}}{\mathrm{T}^{2}}$				
R_{1}	R_{2}	R_{3}						

Plot a graph between $\Delta \mathrm{M}$ and a . Choose 2 points on the graph, find the values of ΔM and a for the 2 points and calculate the value of g from the slope of the graph by applying Eq. (3).
$\Delta \mathrm{M}=$ constant:
Note that small m's (m_{1} and m_{2}) represent masses on the cylinders.
$\Delta M=m_{1}+C_{1}-m_{2}-C_{2}=$
In the following table, $\Sigma M=m_{1}+C_{1}+m_{2}+C_{2}$.

No.	$\begin{gathered} m_{1} \\ (\mathrm{~kg}) \end{gathered}$	$\begin{aligned} & \mathrm{m}_{2} \\ & (\mathrm{~kg}) \end{aligned}$	$\begin{aligned} & \Sigma M \\ & (\mathrm{~kg}) \end{aligned}$	$\frac{1}{\Sigma M}$	Time of fall, T (second)			Average T	$\mathrm{a}=\frac{2 \mathrm{D}}{\mathrm{T}^{2}}$
					R_{1}	R_{2}	R_{3}		
								,	

Plot a graph between $\frac{1}{\Sigma M}$ and a.
Choose 2 points on the graph, find the values of $\frac{1}{\Sigma M}$ and a for the 2 points and calculate the value of g from the slope of the graph by applying Eq. (3).

Percent error in the experimental value of $\mathrm{g}=$

Experiment No. 6: Questions

1. Draw the free body diagrams of M_{1} and M_{2}, indicating the forces acting on them.
2. What is the resultant force acting on M_{1} in observation number 2 of the first table?
3. Is the magnitude of the resultant force acting on M_{1} equal to the magnitude of the resultant force acting on M_{2} ? Explain your answer.
